Uniform approximation by Bernstein-type operators
نویسندگان
چکیده
منابع مشابه
On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملBlending Type Approximation by Bernstein-durrmeyer Type Operators
In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absol...
متن کاملPointwise approximation by Bernstein type operators in mobile interval
Keywords: Bernstein operators Pointwise approximation Rate of convergence a b s t r a c t In the present paper, we study pointwise approximation by Bernstein–Durrmeyer type operators in the mobile interval x 2 0; 1 À 1 nþ1 h i , with use of Peetre's K-functional and x 2 u k ðf ; tÞ ð0 6 k 6 1Þ, we give its properties and obtain the direct and inverse theorems for these operators.
متن کاملUniform Approximation by Elementary Operators
On a separable C-algebra A every (completely) bounded map which preserves closed two sided ideals can be approximated uniformly by elementary operators if and only if A is a finite direct sum of C-algebras of continuous sections vanishing at ∞ of locally trivial C-bundles of finite type.
متن کاملOn simultaneous approximation for some modified Bernstein-type operators
for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a certain index set. For α = β = 0, In = {0}, this definition reduces to the BernsteinDurrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1, In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as Pn(f ,x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1984
ISSN: 1385-7258
DOI: 10.1016/1385-7258(84)90060-x